A recent paper by Maier and Westendorp (2009) focused on the replicative capacity of fibroblasts from patients with accelerated ageing syndromes, patients with age-related diseases and donors of varying chronological age. Their findings were as follows:
(1) Fibroblasts from patients with accelerated ageing syndromes are lower when compared with strains from age-matched controls.
(2) No difference in replicative capacity was found in fibroblasts from patients with age-related diseases when compared to age-matched controls.
(3) No relationship between replicative capacity of fibroblasts and donor age.
It is probably not surprising that there is a lower replicative capacity in skin fibroblasts taken from patients with Werner- and Hutchinson-Gilford syndrome patients as the mechanisms underlying these syndromes are probably universally found throughout all the somatic cells in these patients. For example, Werner syndrome is caused by a mutation in the WRN gene and is associated with short telomeres and accelerated cellular senescence (Cox and Faragher, 2007). This mutation is going to be present in all cell types, therefore it does not matter which cell type is investigated, the result of a reduced replicative capacity is likely to be the same. However, the same result is unlikely to be true when investigating the replicative capacity of skin fibroblasts in subjects suffering from diseases associated with a completly different cell type.
Maier and Westendorp investigated the replicative capacity of skin fibroblasts in patients with age-related disease. However, some of the diseases classed as age related in this instance are not. These include cystic fibrosis and familial Alzheimer’s disease. This is not the main point in question. It is not surprising that there is no relationship between the replicative capacity of skin fibroblasts in patients suffering from say cardiovascular disease or diabetes because this cell type has no involvement in the development or progression of those particular diseases. If they looked at cell types related to a particular disease such as vascular endothelial cells in cardiovascular disease (Minamino et al, 2002), microglial cells in Alzheimer’s (Streit et al 2007) or pancreatic beta cells in diabetes (Sone and Kagawa, 2005) they would most likely see a decline in replicative capacity compared to age-matched controls. This was the case for lung fibroblasts in lung emphysema, demonstrated in this investigation.
Different cell types have different replicative capacities, have different functions, are maintained within different environments and thus undergo varying degrees of stresses. In addition to this, there are risk factors such as sun exposure, smoking and diet which have the potential to accelerate cellular ageing. As such, different tissues age at different rates. Therefore, the presence of disease in one tissue is not necessarily going to reflect the biological condition of another. The replicative capacity of skin fibroblasts is not necessarily going to be influenced by the presence of disease in other tissues.
A theoretical scenario where a particular disease may impact on the replicative capacity of skin fibroblasts, is if the presence of disease uses up the stem cell/progenitor cell reserve needed for cellular repair and replacement, or somehow impacts on the functioning of stem cell/progenitor cells. In this instance, damaged or lost skin cells can no longer be replaced by the stem cell/progenitor cell reserve, causing local cells to divide and replace instead. This in turn reduces the replicative capacity of those cells. This may occur in advanced stages of a disease where constant cell replacement has been undertaken. This may explain results of studies investigated in this paper which demonstrated that the replicative capacity of fibroblasts in patients with severe diabetes was diminished when compared with controls, but was insignificantly decreased in patients with mild to moderate diabetes. Also, Kuki et al (2006) has demonstrated that endothelial progenitor cells (EPCs) cultured under high glucose levels (associated with diabetes) undergo accelerated senescence. The presence of elevated oxidised low density lipoproteins (ox-LDL) observed in diabetics has also been shown to reduce the number and impair function of circulating EPCs. In addition to this, it is known that stem cells lose the capacity for self renewal when removed from the stem cell niche, suggesting that the local environment plays a crucial role in determining stem cell behaviour (Boyle et al, 2007). Therefore, the presence of diseases in advanced stages, especially those associated with inflammation, may alter the environment of stem cell niches and thus impacting on their ability to function. In this scenario, the presence of disease has the potential to impact other tissues by impairing the function of stem/progenitor cells needed for repair and maintenance.
It has often been shown that a decline in the replicative capacity of fibroblasts is correlated with an increase in chronological age of a donor. However, if the health state of donors is taken into consideration and only “healthy” subjects are investigated in this regard, there appears to be no correlation (Cristofalo et al, 1998). This suggests that the replicative capacity of a tissue only reflects biological age and not chronological age. Of course it is true, that a longer a person lives, the increased likelihood that cells become damaged, lost and replaced and this in turn would reduce the replicative capacity of those cells. However, if factors which result in cellular damage/loss such as the presence of disease (not necessarily age-related), infection or environmental factors such as smoking and sun exposure are reduced, then damage/loss of cells is reduced and the replicative capacity of those cells remains high.
Maier and Westendorp suggest an alternative explanation for the lack of relationship between donor age and replicative lifespan of skin fibroblasts: “The overall replicative capacity might decline with age but rare fibroblasts clones with extended replicative potential continue to be present at old age but do not nessesarily reflect the properties of the overall population. Therefore, the replicative capacity in vitro reflects only the expansive propagation of the longest surviving clone, which seems to have comparable in vitro characteristics when obtained from young and old individuals.”
Data on the replicative capacity of cells in regard to ageing and age-related disease is only important because the shorter the replicative capacity of a tissue, the increased likelihood that senescent cells will appear or are present. The presence of senescent cells in tissues is thought to play a role in ageing and age-related disease. Thus, it is more important to investigate the distribution and frequency of senescent cells in tissues associated with accelerated ageing syndromes, age-related diseases and chronological age.
1 comment:
The reality of growing old is inevitable but we can probably do something to to slow down the aging process through maintaining a healthy lifestyle.
Post a Comment